on C(2) which shifts the ¹³C resonance to $\delta 56.6$. The difference in chemical shifts for the two C(3) protons can be rationalized in terms of different average environments. From Fig. 1 it can be seen that one proton lies above the plane of the perpendicular phenyl ring while the other is in a nonmagnetic environment. The signal at $\delta 1.65$ is consistent with an upfield shift for a proton lying above a phenyl ring. While the intramolecular interactions are weak, the sum of the interaction must be sufficient to ensure that the timeaveraged solution conformation is similar to that observed in the solid.

We would like to acknowledge the financial support of the Robert A. Welch Foundation and the National Science Foundation (CHE74-18742).

References

GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.

JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.

Acta Cryst. (1977). B33, 585-586

Trimétaphosphate de Césium Monohydraté

PAR ISAAC TORDJMAN, RENÉ MASSE ET JEAN-CLAUDE GUITEL

Laboratoire des Rayons X, CNRS, 166 X, 38042 Grenoble Cédex, France

(Reçu le 13 septembre 1976, accepté le 1 octobre 1976)

H,0

Abstract. Cs₃P₃O₉. H₂O, triclinic; a = 10.610(6), b =7.966(4), c = 8.172(5) Å, $\alpha = 96.64(8), \beta =$ $68 \cdot 84$ (8), $\gamma = 95 \cdot 42$ (8)°; space group $P\overline{1}$, two formula units per cell. The crystal structure was solved from single-crystal diffractometer data by a Patterson synthesis and refined by a least-squares method. The final R value is 0.05 for 1120 independent reflexions.

Introduction. Cs₃P₃O₉. H₂O a été préparé par Grenier (1973) suivant une méthode que Boullé (1938) avait appliquée au sel de calcium.

 $Ag_{3}P_{3}O_{9}.H_{2}O + 3CsCl \longrightarrow Cs_{3}P_{3}O_{9}.H_{2}O + 3AgCl.$

Grenier (1973) a établi que Cs₃P₃O₆.H₂O est triclinique et a donné une maille.

Les intensités diffractées ont été mesurées à l'aide d'un diffractomètre automatique Philips avec la radiation Ag $K\bar{\alpha}$ ($\lambda = 0.5608$ Å), et monochromateur en graphite. Dimensions du cristal: $0,13 \times 0,15 \times 0,15$ mm; nombre de réflexions indépendantes mesurées: 1700; nombre de réflexions conservées pour l'affinement: 1120; domaine angulaire de mesure: $4^{\circ} < \theta <$ 19°; vitesse de balayage: 0.05° s⁻¹; balayage en ω ; largeur: $1.2^{\circ}(\theta)$.

Une sommation de Patterson tridimensionnelle a permis de localiser les atomes de césium dans l'hypothèse du groupe $P\overline{1}$. Des sommations de Fourier révèlent les atomes de phosphore et d'oxygène. La molécule d'eau apparaît sur une synthèse de Fourier différence. L'affinement du modèle obtenu dans le groupe $P\overline{1}$, par une méthode de moindres carrés, effectué au moyen du programme SFLS-5 de Prewitt (1966) sur 1120 réflexions conduit à une valeur de R = 5%.* Les

Tableau 1. Coordonnées cristallographiques des atomes

	x	У	Ζ	В
Cs(1)	0,0133(1)	0,2592 (2)	0,2598 (2)	2,34 (2)
Cs(2)	0,6233(1)	0,1225 (2)	0,1955 (2)	2,43 (2)
Cs(3)	0,6587(1)	0,3796 (2)	0,7219 (2)	2,35 (2)
P(1)	-0,0029 (5)	0,2412 (6)	0,7732 (7)	1,72 (5)
P(2)	0,2479(6)	0,4223 (6)	0,7710 (7)	1,79 (5)
P(3)	0,2570 (5)	0,1374 (6)	0,5121 (7)	1,47 (5)
O(L1)	0,323 (2)	0,257 (2)	0,645 (2)	2,8 (1)
O(L2)	0,100(1)	0,109(1)	0,634 (2)	2,1(1)
O(L3)	0,097 (2)	0,349 (2)	0,861 (2)	2,8 (1)
O(E11)	-0,049(1)	0,359 (2)	0,674 (2)	2,6(1)
O(E12)	-0,099 (2)	0,141 (2)	0,906 (2)	3,0(1)
O(E21)	0,311 (1)	0,453 (2)	0,909 (2)	2,9 (1)
O(E22)	0,256 (2)	0,557 (2)	0,660 (2)	2,8 (1)
O(E31)	0,268 (2)	0,235 (2)	0,367 (2)	3,2 (1)
O(E32)	0,325(1)	-0,023 (2)	0,476 (2)	2,9 (1)
H ₂ O	0,413(1)	0,206 (2)	0.018(2)	2.6(1)

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32172: 9 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 3. Distances interatomiques (Å) et angles des liaisons (°)

Cycle trimétaphosphate					
P(1)-O(L2)P(1)-O(L3)P(1)-O(E11)P(1)-O(E21)O(L2)-O(L3)O(L2)-O(E11)	1,622 (13) 1,618 (18) 1,483 (18) 1,453 (14) 2,495 (19) 2,527 (20)	P(2)=O(L 1)P(2)=O(L 3)P(2)=O(E 2 1)P(2)=O(E 2 2)O(L 1)=O(L 3)O(L 1)=O(E 2 1)	1,651 (14) 1,584 (15) 1,493 (20) 1,463 (16) 2,524 (20) 2,846 (22)	P(3)-O(L 1)P(3)-O(L 2)P(3)-O(E 3 1)P(3)-O(E 3 2)O(L 1)-O(L 2)O(L 1)-O(E 3 1)	1,658 (18) 1,608 (13) 1,459 (17) 1,472 (16) 2,560 (22) 2,523 (25)
O(L2)–O(E21) O(L3)–O(E11) O(L3)–O(E21) O(E11)–O(E21)	2,466 (18) 2,544 (24) 2,487 (21) 2,551 (21)	O(L1)-O(E22) O(L3)-O(E21) O(L3)-O(E22) O(E21)-O(E22)	2,537 (21) 2,488 (25) 2,525 (20) 2,554 (25)	O(L1)-O(E32) O(L2)-O(E31) O(L2)-O(E32) O(E31)-O(E32)	2,478 (21) 2,508 (18) 2,527 (18) 2,537 (24)
O(L2)-P(1)-O(L3) O(L2)-P(1)-O(E11) O(L2)-P(1)-O(E21) O(L3)-P(1)-O(E11) O(L3)-P(1)-O(E21) O(E11)-P(1)-O(E21) O(E11)-P(1)-O(E21)	100,7 (8) 108,9 (8) 106,5 (8) 110,2 (8) 108,0 (8) 120,7 (9)	O(L1)-P(2)-O(L3) O(L1)-P(2)-O(E21) O(L1)-P(2)-O(E22) O(L3)-P(2)-O(E21) O(L3)-P(2)-O(E22) O(E21)-P(2)-O(E22) O(E21)-P(2)-O(E22) D(L) O(L2) D(2) D(L) O(L2) D(2) D(L) D(L) D(2) D(L) D(102,5 (8) 104,4 (8) 108,9 (9) 107,9 (9) 111,9 (9) 119,6 (9)	O(L1)-P(3)-O(L2) O(L1)-P(3)-O(E31) O(L1)-P(3)-O(E32) O(L2)-P(3)-O(E31) O(L2)-P(3)-O(E32) O(E31)-P(3)-O(E32) D(L2)-P(3)-O(E32) D(L2)-P(3)-	103,2 (8) 107,9 (8) 104,5 (8) 109,6 (8) 110,2 (8) 119,9 (8)
P(2)=O(LT)=P(3) Environment des sites de c	122,6 (9) césium	P(1) = O(L2) = P(3)	130,6 (9)	P(1) = O(L3) = P(2)	129,8 (9)
$C_{s}(1) - O(L2)$ $C_{s}(1) - O(L3)$ $C_{s}(1) - O(E22)$ $C_{s}(1) - O(E31)$ $C_{s}(1) - O(E11)$ $C_{s}(1) - O(E11)$	3,165 (12) 3,203 (16) 3,150 (17) 3,154 (20) 3,218 (15) 3,099 (14)	$Cs(2)-O(E22) \\ Cs(2)-O(E32) \\ Cs(2)-O(E32) \\ Cs(2)-O(E21) \\ Cs(2)-H_2O \\ Cs(2)-H_$	3,054 (15) 3,364 (12) 3,125 (18) 3,038 (14) 3,223 (18) 3,048 (14)	$Cs(3)=O(E21) \\ Cs(3)=O(E22) \\ Cs(3)=O(E31) \\ Cs(3)=O(E32) \\ Cs(3)=O(E11) \\ Cs(3)=O(E11) \\ Cs(3)=H_2O$	3,266 (17) 3,009 (16) 3,193 (15) 3,091 (15) 3,005 (17) 3,179 (13)

coordonnées cristallographiques sont données dans le Tableau 1 et les facteurs de température anisotropes dans le Tableau 2. voisinages octaédriques d'oxygène. Le Tableau 3 donne les distances interatomiques.

Références

BOULLÉ, A. (1938). C.R. Acad. Sci. Paris, 206, 517.

- GRENIER, J. C. (1973). Bull. Soc. Fr. Minér. Crist. 96, 171– 178.
- PREWITT, C. T. (1966). SFLS-5. Oak Ridge National Laboratory Report ORNL-TM-305.

Discussion. La maille contient un cycle trimétaphosphate P_3O_9 indépendant (Fig. 1). La molécule d'eau est liée. Elle participe aux environnements des sites de césium: Cs(2) et Cs(3). Les trois sites de césium ont des